Research and Emerging
Science on the
Physiological Effects of
ACEs and Toxic Stress

Presenters:

Monica Bucci, Moira Szilagyi, Neeta Thakur

PEDIATRIC SYMPOSIUM OCTOBER 20

TOXIC STRESS IN CHILDREN AND ADOLESCENTS

Monica Bucci, MD, Director of Clinical Research Center for Youth Wellness

Advances in Pediatrics 63 (2016) 403–428 http://dx.doi.org/10.1016/j.yapd.2016.04.002

DISCLOSURES

Dr. Bucci is the Director of Clinical Research at the Center for Youth Wellness

The work presented has been recently published *Advances in Pediatrics 63 (2016) 403–428* http://dx.doi.org/10.1016/j.yapd.2016.04.002

I have no relevant financial relationships with commercial interests to disclose.

OVERVIEW

Early life adversity and health outcomes

Early life adversity and toxic stress

Toxic stress and clinical implications

1

Early life adversity and health outcomes

Prevalence

Health Outcomes

TERMINOLOGY

- Early life adversity
- Early life stress
- Early life trauma
- Adverse childhood experiences (ACEs)

Stressful or traumatic events experienced in childhood or adolescence

Early Life Adversity and Health Outcomes

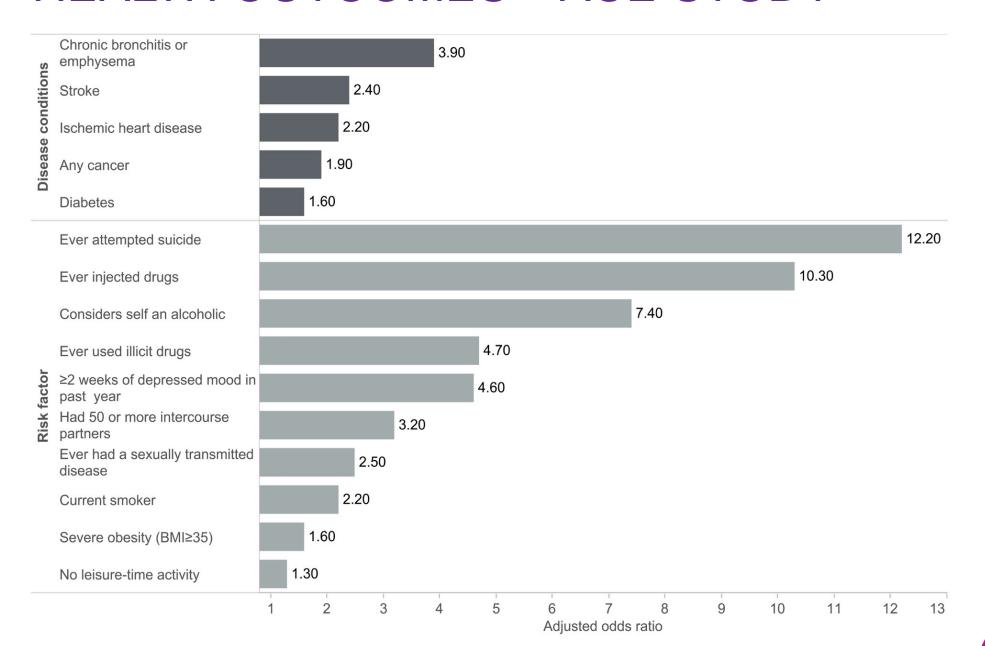
The Adverse Childhood Experience Study (ACE Study)

- Kaiser Permanente's Health Appraisal Clinic in San Diego, in collaboration with the Centers for Disease Control and Prevention
- Medical history and data on exposure to ACEs was collected in two waves from 18,175 patients

THE ADVERSE CHILDHOOD EXPERIENCE (ACE) STUDY

PREVALENCE OF ACES IN ADULTS

- ACE Study¹
 - 63.5% of adults had at least one ACE category
 - 12% had four or more
- Behavioral Risk Factor Surveillance Survey (BRFSS) in 10 states²
 - 59.4% reported at least one early life adversity
 - 15.3% had four or more
- California BRFSS data from 2008, 2009, 2011, and 2013³
 - 61.7% of surveyed adults reported experiencing at least one ACE
 - 16.7% reported having experienced four or more ACEs


Felitti et al., 1998

[.] Gilbert LK, Breiding MJ, Merrick MT, et al. Childhood adversity and adult chronic disease: an update from ten states and the District of Columbia, 2010. Am J Prev Med 2015;48(3):345-9.

PREVALENCE OF ACES IN CHILDREN

- Nationally representative studies show that nearly 50% of children have experienced at least one early life adversity¹⁻⁵
- At a community-based primary care clinic in San Francisco, 67.2% of children had experienced one or more ACE and 12% experienced four or more ACEs⁴
- Among children at high-risk for maltreatment, the rate of having experienced at least one early adversity was found to reach as high as 91%⁵
- 1. Bethell CD, Newacheck P, Hawes E, et al. Health Aff 2014;33(12):2106–15.
- 2. Bright MA, Alford SM, Hinojosa MS, et al. Community Dent Oral Epidemiol 2015;43(3):193-9.
- 3. Wing R, Gjelsvik A, Nocera M, et al. Ann Allergy Asthma Immunol 2015;114(5):379–84.
- 4. Burke NJ, Hellman JL, Scott BG, et al. Child Abuse Negl 2011;35(6): 408–13.
- 5. Flaherty EG, Thompson R, Dubowitz H, et al. JAMA Pediatr 2013;167(7):622–9.

HEALTH OUTCOMES – ACE STUDY

2

Early life adversity and toxic stress

Stress response

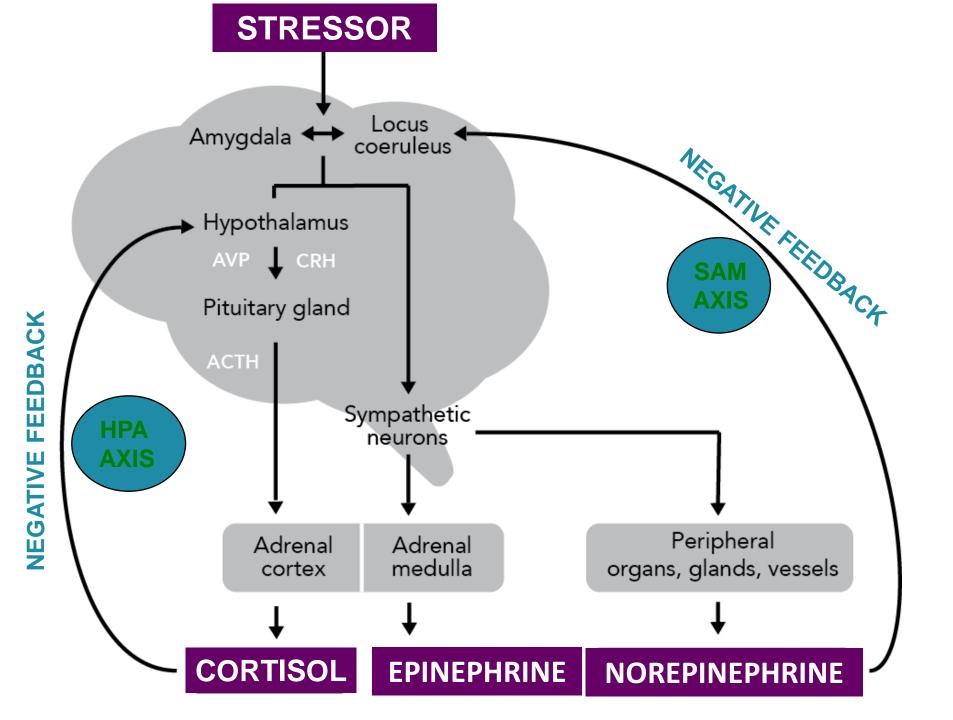
Dysregulation

Biological alterations

STRESS RESPONSE

HYPOTHALAMIC-PITUITARY-ADRENAL AXIS

The HPA axis controls the body's response to stress and is a complex interplay of direct interactions. The HPA axis is composed of:


- The hypothalamus which releases AVP and CRH to the pituitary gland
- The **pituitary gland** which secretes ACTH when stimulated by AVP and CRH
- 3. The **adrenal cortex** which secretes glucocorticoids (cortisol) when stimulated by ACTH

SYMPATHO-ADRENOMEDULLARY AXIS

The SAM axis mediates a rapid response to stress through interconnected neurons and regulates autonomic functions in multiple organ systems. The SAM axis is composed of:

- The sympathetic neurons which release epinephrine and norepinephrine and activate the body's "fight or flight" response
- 2. The **parasympathetic neurons** which withdraw the activity of the sympathetic neurons and promote the body's "rest and digest" response
- 3. The **adrenal medulla** which when triggered by the sympathetic neurons secretes circulating epinephrine and activate the body's "fight or flight" response

SAM AXIS ACTIVATION

PHYSIOLOGICAL CHANGES:

- Blood circulation (HR, BP)
- Respiration (Hyperventilation)
- Metabolism (Redirection to noble organs)

SYMPATHO-ADRENOMEDULLARY AXIS ACTIVATION

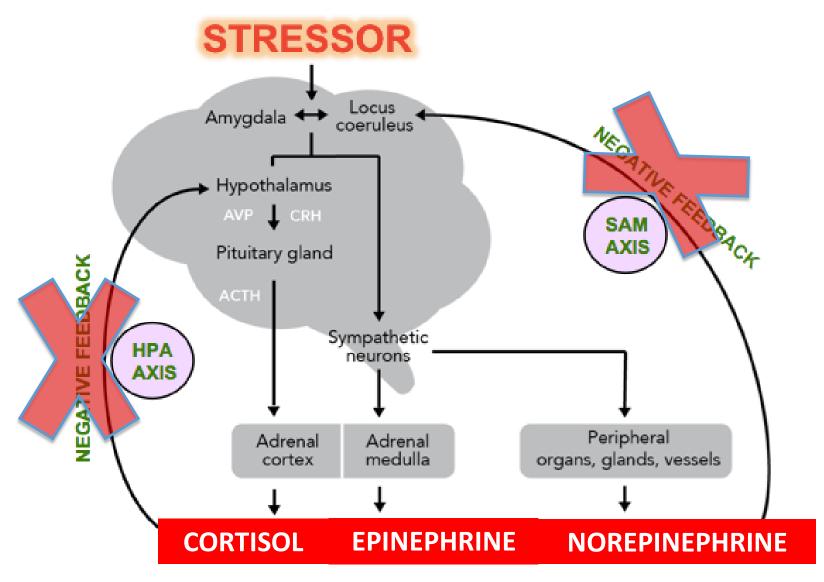
FIGHT FREEZE FLIGHT

HPA AXIS ACTIVATION

- Glucocorticoids (cortisol) are the final effectors of the HPA axis
- Physiologically normal HPA axis function depends on the balanced activation mineralocorticoid and glucocorticoid receptors
 - Mineralocorticoid receptors: stress response
 - Glucocorticoid receptors: termination of the stress response (negative feedback)

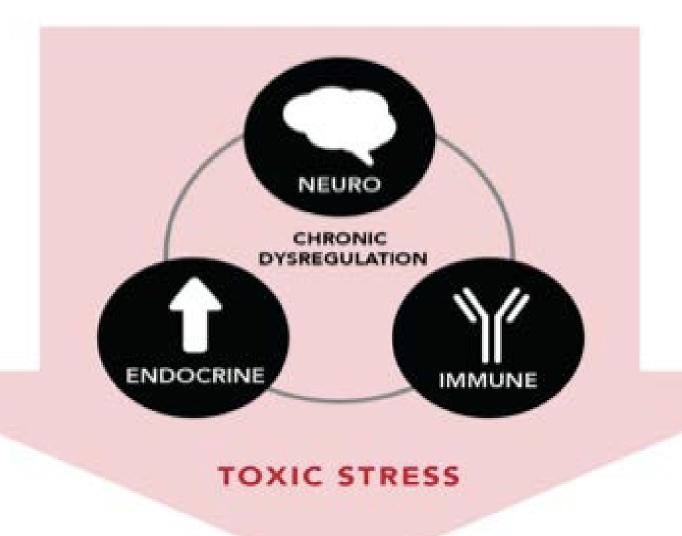
CENTRAL NERVOUS SYSTEM (CNS) ACTIVATION

- Reward center (mesocorticolimbic system: VTA)
- Emotional center (amygdala-hippocampus complex)
- Thermoregulatory center
- Appetite-satiety center
- Prefrontal cortex (executive functions)


STRESS-INDUCED HORMONES

Hormone	Source	Description
Corticotropin-releasing hormone (CRH)	Hypothalamus	Principal regulator of the pituitary-adrenal axis: targets the anterior pituitary
Arginine vasopressin (AVP)	Hypothalamus and posterior pituitary gland	Targets the anterior pituitary and regulates body's homeostasis
Adrenocorticotropin hormone (ACTH)	Anterior pituitary gland	Targets the adrenal cortex to secrete ACTH
Norepinephrine	Sympathetic neurons in the brain stem (medulla and locus coeruleus)	Activates fight-or-flight response
Epinephrine	Adrenal medulla	Activates fight-or-flight response
Glucocorticoids	Adrenal cortex	Final effectors of the LHPA axis. Cortisol is one of the most abundant human glucocorticoid

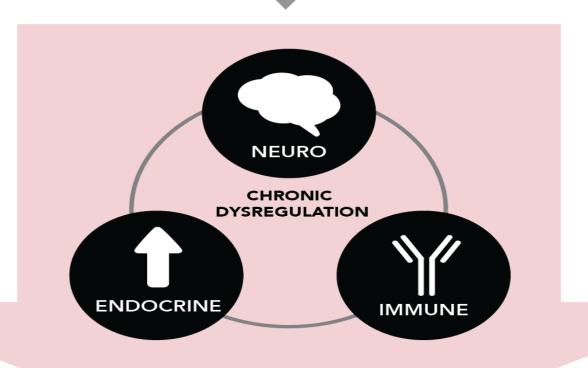
STRESS RESPONSE


POSITIVE	TOLERABLE	TOXIC
Physiological response to mild or moderate stressor	Adaptive response to time-limited stressor	Maladaptive response to intense and sustained stressor
Brief activation of stress response elevates heart rate, blood pressure, and hormonal levels	Time-limited activation of stress response results in short-term systemic changes	Prolonged activation of stress response in children disrupts brain architecture and increases risk of health disorders
Homeostasis recovers quickly through body's natural coping mechanisms	Homeostasis recovers through buffering effect of caring adult or other interventions	Prolonged allostasis establishes a chronic stress response
Tough test at school, playoff game	lmmigration, natural disaster	Abuse, neglect, household dysfunction

STRESS RESPONSE DYSREGULATION

McEwen. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998 May 1;840:33-44.

NEUROENDOCRINE IMMUNE DYSREGULATION


3

Toxic stress and clinical implications

Multisystemic alterations

Genetic factors and epigenetic modifications

TOXIC STRESS

MULTISYSTEMIC ALTERATIONS

NEUROLOGIC

- Prefrontal cortex: reduced synaptic plasticity in children and selective cortex atrophy in adults → executive functions
- Amygdala: increased amygdala volume in children and atrophy in adults → hypervigilance, unlearned fear and fear conditioning
- Hippocampus: reduced hippocampal volume in adults → attention, memory and learning

PSYCHIATRIC

- VTA dopaminergic system → dysphoria and aggression
- Anorexia nervosa, obsessive-compulsive disorder, panic anxiety, excessive exercise, chronic active alcoholism, post-traumatic stress disorder, chronic anxiety, melancholic depression

BEHAVIORAL

 Suicide, eating disorders, substance and alcohol abuse, aggressive and impulsive behaviors

MULTISYSTEMIC ALTERATIONS

ENDOCRINE

Chronic activation of the glucocorticoid receptors

METABOLIC

- Thyroid function inhibited
- Obesity/dyslipidemia
- Insulin resistance/glucose intolerance
- Hypertension

REPRODUCTIVE

- Suppression of reproductive function
- Irregularities of the menstrual cycle

MULTISYSTEMIC ALTERATIONS

IMMUNE

Deficiency of the humoral and cellular immune responses

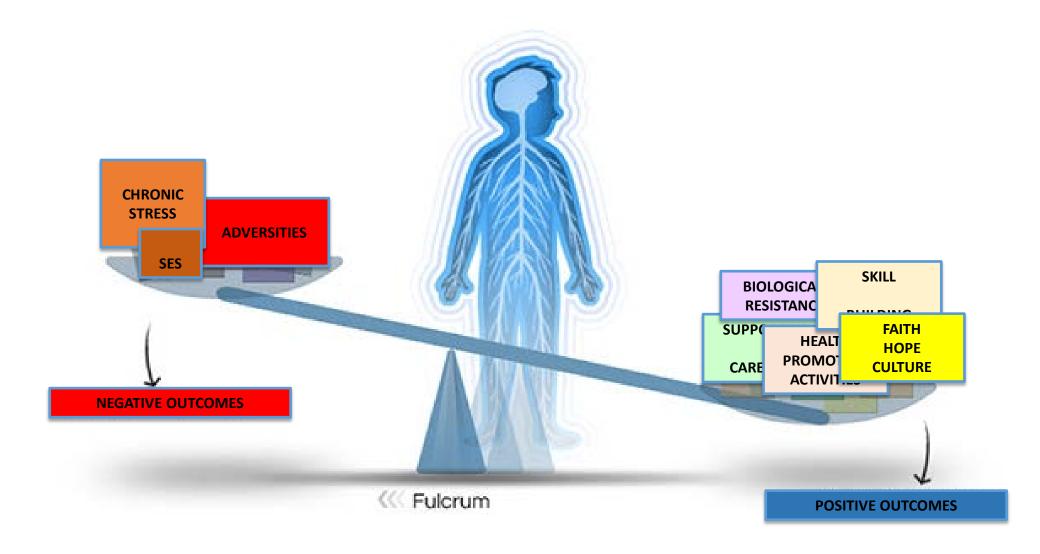
INFLAMMATORY

- Allergies and atopic diseases
- Asthma
- Early atherogenesis and vascular remodeling

CARDIOVASCULAR

 Increased plasma endothelin 1, total peripheral resistance, DBP and pulse wave velocity

GENETIC FACTORS


Genetic polymorphisms

Gene-environment interactions

EPIGENETIC REGULATION

- Epigenetic programming of offspring's behavioral and neuroendocrine stress responses: → prolonged stress responses
- Differential gene expression of pro-inflammatory transcription factors and neurotransmitter receptors
- Telomere length
- Increased risk of other chronic diseases
 (e.g., asthma, hypertension, heart disease, diabetes)

THE ROLE OF RESILIENCE

KEY POINTS

- Stressful or traumatic experiences in childhood are risk factors for negative health outcomes
- In a child exposed to early life adversities, the body's natural stress response can become maladaptive or toxic to the body and brain
- The toxic stress response results from a chronic dysregulation of the circuitry between neurological, endocrine and immune systems and it affects multiple biological systems
- The Role of Resilience

ACKNOWLEDGEMENTS

Sukh Purewal, Research Associate

Kadiatou Koita, Research Associate

Sara Marques,
Director of
Policy

http://www.centerforyouthwellness.org/

Thank you!

Questions?

mbucci@centerforyouthwellness.org